213 research outputs found

    Mapping Europe into local climate zones

    Get PDF
    Cities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives

    Heat risk assessment for the Brussels capital region under different urban planning and greenhouse gas emission scenarios

    Get PDF
    Urban residents are exposed to higher levels of heat stress in comparison to the rural population. As this phenomenon could be enhanced by both global greenhouse gas emissions (GHG) and urban expansion, urban planners and policymakers should integrate both in their assessment. One way to consider these two concepts is by using urban climate models at a high resolution. In this study, the influence of urban expansion and GHG emission scenarios is evaluated at 100 m spatial resolution for the city of Brussels (Belgium) in the near (2031-2050) and far (2081-2100) future. Two possible urban planning scenarios (translated into local climate zones, LCZs) in combination with two representative concentration pathways (RCPs 4.5 and 8.5) have been implemented in the urban climate model UrbClim. The projections show that the influence of GHG emissions trumps urban planning measures in each period. In the near future, no large differences are seen between the RCP scenarios; in the far future, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ type, heat stress is projected to increase by a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk, most notably for the North Western part of the Brussels Capital Region. The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in cities

    Impact of urban canopy parameters on a megacity’s modelled thermal environment

    Get PDF
    Urban canopy parameters (UCPs) are essential in order to accurately model the complex interplay between urban areas and their environment. This study compares three different approaches to define the UCPs for Moscow (Russia), using the COSMO numerical weather prediction and climate model coupled to TERRA_URB urban parameterization. In addition to the default urban description based on the global datasets and hard-coded constants (1), we present a protocol to define the required UCPs based on Local Climate Zones (LCZs) (2) and further compare it with a reference UCP dataset, assembled from OpenStreetMap data, recent global land cover data and other satellite imagery (3). The test simulations are conducted for contrasting summer and winter conditions and are evaluated against a dense network of in-situ observations. For the summer period, advanced approaches (2) and (3) show almost similar performance and provide noticeable improvements with respect to default urban description (1). Additional improvements are obtained when using spatially varying urban thermal parameters instead of the hard-coded constants. The LCZ-based approach worsens model performance for winter however, due to the underestimation of the anthropogenic heat flux (AHF). These results confirm the potential of LCZs in providing internationally consistent urban data for weather and climate modelling applications, as well as supplementing more comprehensive approaches. Yet our results also underline the continued need to improve the description of built-up and impervious areas and the AHF in urban parameterizations

    Sky View Factor footprints for urban climate modeling

    Get PDF
    Urban morphology is an important multidimensional variable to consider in climate modeling and observations, because it significantly drives the local and micro-scale climatic variability in cities. Urban form can be described through urban canopy parameters (UCPs) that resolve the spatial heterogeneity of cities by specifying the 3-dimensional geometry, arrangement, and materials of urban features. The sky view factor (SVF) is a dimension-reduced UCP capturing 3-dimensional form through horizon limitation fractions. SVF has become a popular metric to parameterize urban morphology, but current approaches are difficult to scale up to global coverage. This study introduces a Big-Data approach to calculate SVFs for urban areas from Google Street View (GSV). 90-degree field-of-view GSV photos are retrieved and converted into hemispherical views through equiangular projection. The fisheyes are segmented into sky and non-sky pixels using image processing, and the SVF is calculated using an annulus method. Results are compared to SVFs retrieved from GSV images segmented using deep learning. SVF footprints are presented for urban areas around the world tallying 15,938,172 GSV locations. Two use cases are introduced: (1) an evaluation of a Google Earth Engine classified Local Climate Zone map for Singapore; (2) hourly sun duration maps for New York and San Francisco

    A non-linear Granger-causality framework to investigate climate-vegetation dynamics

    Get PDF
    Satellite Earth observation has led to the creation of global climate data records of many important environmental and climatic variables. These come in the form of multivariate time series with different spatial and temporal resolutions. Data of this kind provide new means to further unravel the influence of climate on vegetation dynamics. However, as advocated in this article, commonly used statistical methods are often too simplistic to represent complex climate-vegetation relationships due to linearity assumptions. Therefore, as an extension of linear Granger-causality analysis, we present a novel non-linear framework consisting of several components, such as data collection from various databases, time series decomposition techniques, feature construction methods, and predictive modelling by means of random forests. Experimental results on global data sets indicate that, with this framework, it is possible to detect non-linear patterns that are much less visible with traditional Granger-causality methods. In addition, we discuss extensive experimental results that highlight the importance of considering non-linear aspects of climate-vegetation dynamics

    Global hydro-climatic biomes identified via multitask learning

    Get PDF
    The most widely used global land cover and climate classifications are based on vegetation characteristics and/or climatic conditions derived from observational data. However, these classification schemes do not directly stem from the characteristic interaction between the local climate and the biotic environment. In this work, we model the dynamic interplay between vegetation and local climate in order to delineate ecoregions that share a coherent response to hydro-climate variability. Our novel framework is based on a multitask learning approach that discovers the spatial relationships among different locations by learning a low-dimensional representation of predictive structures. This low-dimensional representation is combined with a clustering algorithm that yields a classification of biomes with coherent behaviour. Experimental results using global observation-based datasets indicate that, without the need to prescribe any land cover information, the identified regions of coherent climate-vegetation interactions agree well with the expectations derived from traditional global land cover maps. The resulting global "hydro-climatic biomes" can be used to analyse the anomalous behaviour of specific ecosystems in response to climate extremes and to benchmark climate-vegetation interactions in Earth system models

    The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0) : an efficient and user-friendly model of city cooling

    Get PDF
    The adverse impacts of urban heat and global climate change are leading policymakers to consider green and blue infrastructure (GBI) for heat mitigation benefits. Though many models exist to evaluate the cooling impacts of GBI, their complexity and computational demand leaves most of them largely inaccessible to those without specialist expertise and computing facilities. Here a new model called The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET) is presented. TARGET is designed to be efficient and easy to use, with fewer user-defined parameters and less model input data required than other urban climate models. TARGET can be used to model average street-level air temperature at canyon-to-block scales (e.g. 100 m resolution), meaning it can be used to assess temperature impacts of suburb-to-city-scale GBI proposals. The model aims to balance realistic representation of physical processes and computation efficiency. An evaluation against two different datasets shows that TARGET can reproduce the magnitude and patterns of both air temperature and surface temperature within suburban environments. To demonstrate the utility of the model for planners and policymakers, the results from two precinct-scale heat mitigation scenarios are presented. TARGET is available to the public, and ongoing development, including a graphical user interface, is planned for future work

    Revealing Kunming’s (China) historical urban planning policies through Local Climate Zones

    Get PDF
    Over the last decade, Kunming has been subject to a strong urbanisation driven by rapid economic growth and socio-economic, topographical and proximity factors. As this urbanisation is expected to continue in the future, it is important to understand its environmental impacts and the role that spatial planning strategies and urbanisation regulations can play herein. This is addressed by (1) quantifying the cities' expansion and intra-urban restructuring using Local Climate Zones (LCZs) for three periods in time (2005, 2011 and 2017) based on the World Urban Database and Access Portal Tool (WUDAPT) protocol, and (2) cross-referencing observed land-use and land-cover changes with existing planning regulations. The results of the surveys on urban development show that, between 2005 and 2011, the city showed spatial expansion, whereas between 2011 and 2017, densification mainly occurred within the existing urban extent. Between 2005 and 2017, the fraction of open LCZs increased, with the largest increase taking place between 2011 and 2017. The largest decrease was seen for low the plants (LCZ D) and agricultural greenhouse (LCZ H) categories. As the potential of LCZs as, for example, a heat stress assessment tool has been shown elsewhere, understanding the relation between policy strategies and LCZ changes is important to take rational urban planning strategies toward sustainable city development

    Exploring the effect of occurrence-bias-adjustment assumptions on hydrological impact modeling

    Get PDF
    Bias adjustment of climate model simulations is a common step in the climate impact assessment modeling chain. For precipitation intensity, multiple bias-adjusting methods have been developed, but less so for precipitation occurrence. Intensity-bias-adjusting methods such as ‘Quantile Delta Mapping’ can adjust too many wet days, but not too many dry days. Some occurrence-bias-adjusting methods have been developed to resolve this by the addition of the ability to adjust too dry simulations. Earlier research has shown this to be important when adjusting on a continental scale, when both types of biases can occur. However, the newer occurrence-bias-adjusting methods have their weakness: they might retain a bias in the number of dry days when adjusting data in a region that only has too many wet days. Yet, if this bias is small enough, it is more practical and economical to apply the newer methods when data in the larger region are adjusted. In this study, we consider two recently introduced occurrence-bias-adjusting methods, Singularity Stochastic Removal and Triangular Distribution Adjustment, and compare them in a region with only wet-day biases. This bias adjustment is performed for precipitation intensity and precipitation occurrence, while the evaluation is performed on precipitation intensity, precipitation occurrence and discharge, which combines the former two variables. Despite theoretical weaknesses, we show that both Singularity Stochastic Removal and Triangular Distribution Adjustment perform well. Thus, the methods can be applied for both too wet and too dry simulations, although Triangular Distribution Adjustment may be preferred as it was designed with a broad application in mind.</jats:p
    • …
    corecore